Search for Well Architected Advice
-
Operational Excellence
-
- Resources have identified owners
- Processes and procedures have identified owners
- Operations activities have identified owners responsible for their performance
- Team members know what they are responsible for
- Mechanisms exist to identify responsibility and ownership
- Mechanisms exist to request additions, changes, and exceptions
- Responsibilities between teams are predefined or negotiated
-
- Executive Sponsorship
- Team members are empowered to take action when outcomes are at risk
- Escalation is encouraged
- Communications are timely, clear, and actionable
- Experimentation is encouraged
- Team members are encouraged to maintain and grow their skill sets
- Resource teams appropriately
- Diverse opinions are encouraged and sought within and across teams
-
- Use version control
- Test and validate changes
- Use configuration management systems
- Use build and deployment management systems
- Perform patch management
- Implement practices to improve code quality
- Share design standards
- Use multiple environments
- Make frequent, small, reversible changes
- Fully automate integration and deployment
-
Security
-
- Evaluate and implement new security services and features regularly
- Automate testing and validation of security controls in pipelines
- Identify and prioritize risks using a threat model
- Keep up-to-date with security recommendations
- Keep up-to-date with security threats
- Identify and validate control objectives
- Secure account root user and properties
- Separate workloads using accounts
-
- Analyze public and cross-account access
- Manage access based on life cycle
- Share resources securely with a third party
- Reduce permissions continuously
- Share resources securely within your organization
- Establish emergency access process
- Define permission guardrails for your organization
- Grant least privilege access
- Define access requirements
-
- Build a program that embeds security ownership in workload teams
- Centralize services for packages and dependencies
- Manual code reviews
- Automate testing throughout the development and release lifecycle
- Train for application security
- Regularly assess security properties of the pipelines
- Deploy software programmatically
- Perform regular penetration testing
-
-
Reliability
-
- How do you ensure sufficient gap between quotas and maximum usage to accommodate failover?
- How do you automate quota management?
- How do you monitor and manage service quotas?
- How do you accommodate fixed service quotas and constraints through architecture?
- How do you manage service quotas and constraints across accounts and Regions?
- How do you manage service quotas and constraints?
- How do you build a program that embeds reliability into workload teams?
-
- How do you enforce non-overlapping private IP address ranges in all private address spaces?
- How do you prefer hub-and-spoke topologies over many-to-many mesh?
- How do you ensure IP subnet allocation accounts for expansion and availability?
- How do you provision redundant connectivity between private networks in the cloud and on-premises environments?
- How do you use highly available network connectivity for workload public endpoints?
-
- Monitor end-to-end tracing of requests through your system
- Conduct reviews regularly
- Analytics
- Automate responses (Real-time processing and alarming)
- Send notifications (Real-time processing and alarming)
- Define and calculate metrics (Aggregation)
- Monitor End-to-End Tracing of Requests Through Your System
-
- Monitor all components of the workload to detect failures
- Fail over to healthy resources
- Automate healing on all layers
- Rely on the data plane and not the control plane during recovery
- Use static stability to prevent bimodal behavior
- Send notifications when events impact availability
- Architect your product to meet availability targets and uptime service level agreements (SLAs)
-
-
Cost Optimization
-
- Establish ownership of cost optimization
- Establish a partnership between finance and technology
- Establish cloud budgets and forecasts
- Implement cost awareness in your organizational processes
- Monitor cost proactively
- Keep up-to-date with new service releases
- Quantify business value from cost optimization
- Report and notify on cost optimization
- Create a cost-aware culture
-
- Perform cost analysis for different usage over time
- Analyze all components of this workload
- Perform a thorough analysis of each component
- Select components of this workload to optimize cost in line with organization priorities
- Perform cost analysis for different usage over time
- Select software with cost effective licensing
-
-
Performance
-
- Learn about and understand available cloud services and features
- Evaluate how trade-offs impact customers and architecture efficiency
- Use guidance from your cloud provider or an appropriate partner to learn about architecture patterns and best practices
- Factor cost into architectural decisions
- Use policies and reference architectures
- Use benchmarking to drive architectural decisions
- Use a data-driven approach for architectural choices
-
- Use purpose-built data store that best support your data access and storage requirements
- Collect and record data store performance metrics
- Evaluate available configuration options for data store
- Implement Strategies to Improve Query Performance in Data Store
- Implement data access patterns that utilize caching
-
- Understand how networking impacts performance
- Evaluate available networking features
- Choose appropriate dedicated connectivity or VPN for your workload
- Use load balancing to distribute traffic across multiple resources
- Choose network protocols to improve performance
- Choose your workload's location based on network requirements
- Optimize network configuration based on metrics
-
- Establish key performance indicators (KPIs) to measure workload health and performance
- Use monitoring solutions to understand the areas where performance is most critical
- Define a process to improve workload performance
- Review metrics at regular intervals
- Load test your workload
- Use automation to proactively remediate performance-related issues
- Keep your workload and services up-to-date
-
-
Sustainability
-
- Optimize geographic placement of workloads based on their networking requirements
- Align SLAs with sustainability goals
- Optimize geographic placement of workloads based on their networking requirements
- Stop the creation and maintenance of unused assets
- Optimize team member resources for activities performed
- Implement buffering or throttling to flatten the demand curve
-
- Optimize software and architecture for asynchronous and scheduled jobs
- Remove or refactor workload components with low or no use
- Optimize areas of code that consume the most time or resources
- Optimize impact on devices and equipment
- Use software patterns and architectures that best support data access and storage patterns
- Remove unneeded or redundant data
- Use technologies that support data access and storage patterns
- Use policies to manage the lifecycle of your datasets
- Use shared file systems or storage to access common data
- Back up data only when difficult to recreate
- Use elasticity and automation to expand block storage or file system
- Minimize data movement across networks
-
- Articles coming soon
< All Topics
Print
Use a data-driven approach for architectural choices
PostedDecember 20, 2024
UpdatedDecember 20, 2024
ByKevin McCaffrey
A data-driven approach enables organizations to optimize their cloud services and architecture patterns by utilizing quantifiable metrics and analytics. This enhances decision-making processes and ensures that chosen resources align effectively with the specific needs of the workload and organizational objectives.
Best Practices
- Implement Monitoring and Analytics Tools: Utilize AWS CloudWatch and other monitoring tools to gather performance data and usage metrics regularly. This data helps identify trends and informs decisions on resource allocation and architectural adjustments.
- Conduct Regular Performance Reviews: Schedule periodic reviews of workload performance metrics versus expected outcomes. Adjust resource configurations based on findings to ensure consistent alignment with performance goals.
- Develop Cost-Benefit Analysis Models: Create models to analyze the trade-offs of different cloud resources. This approach minimizes costs while maximizing performance efficiency by selecting the optimal combination of services.
Supporting Questions
- Are you continuously monitoring the performance metrics of your workloads?
- Have you established a feedback loop from operational data to improve architectural decisions?
Roles and Responsibilities
- Cloud Architect: Responsible for designing and managing cloud configurations, ensuring decisions are based on data analytics and business requirements.
- Data Analyst: Analyzes operational data and performance metrics to provide insights that guide architectural choices.
Artifacts
- Performance Metrics Dashboard: A visual tool that tracks key performance metrics of cloud resources, enabling easy analysis and decision-making.
- Architectural Decision Record: A documented record of architectural decisions made, including the data and rationale behind them, to facilitate transparency and ongoing evaluation.
Cloud Services
AWS
- AWS CloudWatch: Provides monitoring and observability of AWS cloud resources, enabling real-time data collection and reporting on resource utilization and application performance.
- AWS Trusted Advisor: Delivers real-time guidance to help provision your resources following best practices to optimize performance and reduce costs.
Question: How do you select the appropriate cloud resources and architecture patterns for your workload?
Pillar: Performance Efficiency (Code: PERF)
Table of Contents